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Abstract

In this paper an interval modeling approach for uncertainty quantification of a structure with significant parameter

variation is presented. Model uncertainty can be categorized as dominant uncertainty due to structural variation, such as

joint uncertainty and temperature change, and minor uncertainty associated with other factors. In this paper, a singular

value decomposition (SVD) technique is used to decompose parameter variations into principal components that are

weighted based on the sensitivity of the performance metric to parameter variations. From this process, parameter bounds

in the form of an interval model are generated and each interval corresponds to one identified bounded uncertainty

parameter with its associated principal direction. The proposed approach can be used to differentiate between dominant

and minor uncertainties. A beam structure with an attached subsystem proposed by Sandia National Laboratories is used

to demonstrate this approach.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Model validation and uncertainty quantification of structural dynamic problems are of great interest to
both government and industry [1–3]. Structural uncertainty and the variability associated with physical
parameters and environmental changes raise issues concerning reliability, safety, and performance. Thus,
uncertainty quantification and model validation of structural dynamic problems play a key role in addressing
these issues.

Recently, a model validation workshop [4] was organized by Sandia National Laboratories to address the
problem of certification of structures under various forms of uncertainty. In this paper, an interval modeling
technique for uncertainty quantification of the structural dynamics problem proposed by Sandia [5] is
described. Following their formulation, an integrated system, consisting of a beam structure and an attached
subsystem, shown in Fig. 1, is the test structure used for study. In this model the physical elements of the
attached three degrees of freedom subsystem, shown in Fig. 2, are the only ones exhibiting significant
parameter variations, while all other parameters are known.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. A beam structure with an attached subsystem.

Fig. 2. Three degrees-of-freedom subsystem.
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In the process of certifying structures for use in harsh dynamic environments it is often required that not
only the main structure be capable of withstanding the loads but also all the attached substructures. To ensure
survivability of all the substructures, Sandia in Ref. [5] has chosen a performance metric in terms of the
maximum acceleration magnitude of mass 3, top of the substructure, under a shock force at position x8, with
the shock input profile prescribed. In this paper, a singular value decomposition (SVD) technique is applied to
extract the principal components of parameter variations. For this study, the uncertain parameters are the
identified modal parameters (frequency, damping, and mode shape), 15 parameters in total. To incorporate
the performance metric in the SVD solution, the sensitivity of the performance metric to each modal
parameter is computed, and used as a weighting factor in the SVD process. From this process, an interval
model is generated with its associated principal direction [6,7]. It is this identified interval model that is used to
model all parameter variations. The approach is presented next.

2. Model uncertainty quantification

In this section, an uncertainty quantification approach is presented using the example proposed by Sandia
[5]. The data that are used for model uncertainty quantification are based on the identified modal parameters
from 60 virtual experiments [5], generated from 20 identical systems selected from a virtual pool and three
levels of random excitation applied at mass 2. These identified modal parameters were provided by Sandia [5]
for uncertainty quantification. The modal parameter vector of the subsystem is defined as

p ¼ o1; o2; o3; x1; x2; x3; f11; f21; f31; f12; . . . ; f33

� �T
, (1)

where oi is the ith natural frequency, xi the ith damping ratio, and fji the jth component of the ith mode shape.
To quantify the parameter uncertainty, the deviation of the parameter vector from the nominal vector for the
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jth test is defined as

Dpj ¼ pj � p0; j ¼ 1; . . . ; n; p0 ¼
1

n

Xn

j¼1

pj , (2)

where pj is the jth identified parameter vector, and p0 the nominal parameter vector which is computed
as the average from n ¼ 60 experiments. Using the changes from the nominal values an uncertainty matrix is
defined as

DP ¼ ½Dp1;Dp2; . . . ; Dpn�. (3)

To incorporate the effects of the performance metric, the sensitivity of the performance metric is used as a
weighting factor. For example, in the Sandia problem, the performance metric is the maximum acceleration
magnitude of mass 3 due to a shock input at position x8. The sensitivity of the performance index to the jth
component of the ith chosen subsystem pi is defined as

sij ¼
1

a pið Þ

qa pi
� �
qpij

����
����sj ; i ¼ 1; . . . ; ns, (4)

where a(pi) is the maximum acceleration magnitude with subsystem parameter vector pi, pij is the jth
component of parameter vector pi, sj is the standard deviation of the jth vector component, and ns is the
number of parameter vectors. This sensitivity represents a percentage change weighted by sj to account for the
size of the parameter variation. The average sensitivity corresponding to the jth parameter vector component
is defined as

sj ¼
1

ns

Xns

i¼1

sij

�� ��. (5)

To weight the degree of variation in each parameter, an initial weighting matrix is computed as

DP1 ¼W�1
1 DP, (6)

where W1 is a diagonal matrix with its jth diagonal element as the standard deviation sj. The weighting matrix
including sensitivity is computed as

DPW ¼W 2DP1, (7)

where W2 is a diagonal matrix with its jth diagonal element sj. In this paper, a SVD technique [6] is used to
generate an optimal linear interval model that represents the parameter vector with uncertainty, as

P ¼ pjp ¼ p0 þ
X15
j¼1

ajqj ; aj 2 a�j ; a
þ
j

h i( )
, (8)

where aj are the identified uncertainty parameters corresponding to the basis vectors qj.
In summary, this SVD process involves the following computational steps:
(1)
 Use SVD to compute the basis matrix UW for DPW:

DPW ¼ UW SVT; S ¼ diag½d1; . . . ; d15�: (9)
(2)
 Compute the basis matrix U for DP:

U ¼W 1W
�1
2 UW ; U ¼ ½q1; . . . ; q15�. (10)

Since the singular values dj are in descending order, this leads to a descending order of perturbation
distribution in qj.
(3)
 Compute the coordinate vector of Dpi corresponding to the basis vectors qj:

bi ¼ U�1Dpi. (11)
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Represent each parameter vector as
(4)
pi ¼ p0 þ
X15
l¼1

biðlÞql , (12)

where bi(l) is the lth element of the coordinate vector bi.

(5)
 Compute the parameter bounds as

aþj ¼ maxfb1ðjÞ; b2ðjÞ; . . . ;bnðjÞg, (13)

a�j ¼ minfb1ðjÞ;b2ðjÞ; . . . ;bnðjÞg. (14)

All the basis vectors, coordinates, and parameter bounds are normalized to the first interval length [7].
3. Discussion of results

Following the approach just discussed, results for the Sandia Challenge problem are discussed next. To
begin the weighting factors from the performance sensitivity of maximum acceleration to modal parameters
are computed for masses 1, 2, and 3 and then the sensitivity is averaged to get a single value. These sensitivities
are used in Eq. (7) along with the 60 identified parameter vectors to compute the interval model. Fig. 3 shows
the normalized interval lengths for each ai; normalization is with respect to the first interval, i.e. a1 ¼ 1. After
examining Fig. 3, note that the second interval length drops to 20% of the first interval length, and the fifth
interval length is around 3% of the first one. Consequently, the second and third intervals are significantly less
important when used to describe parameter variation. The model uncertainty is dominated by the first
uncertainty parameter a1. Note that in this approach instead of studying the uncertainty in parameter space,
one looks at the uncertainty in terms of the coordinates of the interval space ai.

Fig. 4 shows three modal parameters of the 60 virtual experiments as functions of the first uncertainty
parameter a1. Variations in the natural frequencies are significant, around 100%, and increase linearly as the
first uncertainty parameter a1 increases. Also, natural frequency variations are the dominant uncertainty
corresponding to variations in a1. In contrast to frequency variations, damping and mode shape variations
behave more like random variables, and they correspond to secondary uncertainties. Fig. 5 shows the natural
frequencies of the second and third modes of the integrated system for the 60 calibration systems and the
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Fig. 3. Interval length of identified uncertainty parameters ai.
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Fig. 5. Natural frequencies of integrated system: (a) second mode and (b) third mode. o is the reduced 4-intervals model and * is the raw

data for 60 calibration systems.
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Fig. 4. Modal parameters of 60 subsystems: (a) natural frequency of 1st mode, (b) damping ratio of 3rd mode, and (c) 2nd mode shape

coefficient of 1st mode.
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reduced 4-intervals model shown in with circles. The identified interval model precisely represents and covers
the original systems.

Figs. 6 and 7 show the identified interval lengths and the natural frequencies of the second and third modes
of the integrated system when the weighting W2 for performance sensitivity is not included in SVD process.
The sixth interval length is still around 30% of the first interval length. However, the dominant uncertainty
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Fig. 6. Interval length of identified uncertainty parameters ai.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
2600

2800

3000

3200

3400

3600

ω
2

(a)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
4000

5000

6000

7000

8000

9000

α1

ω
3

(b)

Fig. 7. Natural frequencies of integrated system: (a) second mode and (b) third mode. o is the reduced 5-intervals model and * is the raw

data for 60 calibration systems.
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corresponding to natural frequency variation cannot be distinguished from the secondary random uncertainty
of damping ratios and mode shape coefficients. Compared with the preceding identified interval model, this
identified interval model is too conservative to represent the original system.

Fig. 8 shows the maximum acceleration of the integrated system of the first interval model with sensitivity
weighting when an impulse input is applied at position x8. The identified interval model precisely represents
the original systems.

4. Concluding remarks

A novel approach for uncertainty quantification of a system with a subsystem attached that exhibits
significant parameter uncertainty was presented. The inclusion of the performance sensitivity weighting in
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Fig. 8. Maximum acceleration of integrated system with impulse force. o is the reduced 5-intervals model and * is the raw data for 60

calibration systems.
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singular value decomposition process can identify the dominant uncertainty from a secondary uncertainty. In
addition, the identified interval model precisely represents the observed parameter variations with dominant
systematic model uncertainty and secondary uncertainty. The results showed that the identified interval
lengths correspond to the uncertainty associated with the direction of the identified basis vectors, and they can
be used as an indicator to reduce the number of uncertain parameters given a performance metric.
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